Fluorescent Protein-Based Ca2+ Sensor Reveals Global, Divalent Cation-Dependent Conformational Changes in Cardiac Troponin C

نویسندگان

  • Myriam A. Badr
  • Jose R. Pinto
  • Michael W. Davidson
  • P. Bryant Chase
چکیده

Cardiac troponin C (cTnC) is a key effector in cardiac muscle excitation-contraction coupling as the Ca2+ sensing subunit responsible for controlling contraction. In this study, we generated several FRET sensors for divalent cations based on cTnC flanked by a donor fluorescent protein (CFP) and an acceptor fluorescent protein (YFP). The sensors report Ca2+ and Mg2+ binding, and relay global structural information about the structural relationship between cTnC's N- and C-domains. The sensors were first characterized using end point titrations to decipher the response to Ca2+ binding in the presence or absence of Mg2+. The sensor that exhibited the largest responses in end point titrations, CTV-TnC, (Cerulean, TnC, and Venus) was characterized more extensively. Most of the divalent cation-dependent FRET signal originates from the high affinity C-terminal EF hands. CTV-TnC reconstitutes into skinned fiber preparations indicating proper assembly of troponin complex, with only ~0.2 pCa unit rightward shift of Ca2+-sensitive force development compared to WT-cTnC. Affinity of CTV-TnC for divalent cations is in agreement with known values for WT-cTnC. Analytical ultracentrifugation indicates that CTV-TnC undergoes compaction as divalent cations bind. C-terminal sites induce ion-specific (Ca2+ versus Mg2+) conformational changes in cTnC. Our data also provide support for the presence of additional, non-EF-hand sites on cTnC for Mg2+ binding. In conclusion, we successfully generated a novel FRET-Ca2+ sensor based on full length cTnC with a variety of cellular applications. Our sensor reveals global structural information about cTnC upon divalent cation binding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of three types of membrane currents by various divalent cations in identified molluscan pacemaker neurons

We investigated membrane currents activated by intracellular divalent cations in two types of molluscan pacemaker neurons. A fast and quantitative pressure injection technique was used to apply Ca2+ and other divalent cations. Ca2+ was most effective in activating a nonspecific cation current and two types of K+ currents found in these cells. One type of outward current was quickly activated fo...

متن کامل

The low-affinity Ca2(+)-binding sites in cardiac/slow skeletal muscle troponin C perform distinct functions: site I alone cannot trigger contraction.

Both troponin C (TnC) and calmodulin share a remarkably similar tertiary motif that may be common to other Ca2(+)-binding proteins with activator activity. TnC plays a critical role in regulating muscle contraction and is particularly well-suited for structural analysis by site-directed mutation. Fast-twitch skeletal muscle TnC has two low-affinity Ca2(+)-binding sites (sites I and II), while i...

متن کامل

Troponin I protein kinase C phosphorylation sites and ventricular function.

OBJECTIVE Cardiac Troponin I (cTnI) phosphorylation by protein kinase C (PKC) results in a reduction of maximal actomyosin ATPase activity, an effect that is more marked at higher levels of calcium (Ca2+) and is likely to reduce active force development. We postulated that there would be greater Ca2+-dependent changes in ventricular function in hearts of cTnI transgenic (TG) mice expressing mut...

متن کامل

The effects of deletion of the amino-terminal helix on troponin C function and stability.

Troponin C has a 14-residue alpha-helix at the extreme amino terminus (the N-helix) which is absent in calmodulin. To learn the significance of this region in troponin C, residues 1-14 were deleted using site-directed mutagenesis. Analysis of the mutant troponin C (delta 14-TnC) showed that deletion of the N-helix did not alter the secondary structure of troponin C. Like wild type troponin C, i...

متن کامل

Phosphorylation of skeletal-muscle troponin I and troponin T by phospholipid-sensitive Ca2+-dependent protein kinase and its inhibition by troponin C and tropomyosin.

Skeletal-muscle troponin I and troponin T were found to be rapidly phosphorylated by cardiac phospholipid-sensitive Ca2+-dependent protein kinase, with Km values of 6.66 and 0.13 microM respectively. Stoichiometric phosphorylation of skeletal troponin I (endogenous phosphate content 0.7 mol/mol) indicated that the Ca2+-dependent enzyme and cyclic AMP-dependent protein kinase incorporated 0.9 an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016